알고리즘 풀이/백준

[백준 2512] 예산

mhko411 2021. 6. 28. 21:45
728x90

문제

국가의 역할 중 하나는 여러 지방의 예산요청을 심사하여 국가의 예산을 분배하는 것이다. 국가예산의 총액은 미리 정해져 있어서 모든 예산요청을 배정해 주기는 어려울 수도 있다. 그래서 정해진 총액 이하에서 가능한 한 최대의 총 예산을 다음과 같은 방법으로 배정한다.

  1. 모든 요청이 배정될 수 있는 경우에는 요청한 금액을 그대로 배정한다.
  2. 모든 요청이 배정될 수 없는 경우에는 특정한 정수 상한액을 계산하여 그 이상인 예산요청에는 모두 상한액을 배정한다. 상한액 이하의 예산요청에 대해서는 요청한 금액을 그대로 배정한다. 

예를 들어, 전체 국가예산이 485이고 4개 지방의 예산요청이 각각 120, 110, 140, 150이라고 하자. 이 경우, 상한액을 127로 잡으면, 위의 요청들에 대해서 각각 120, 110, 127, 127을 배정하고 그 합이 484로 가능한 최대가 된다. 

여러 지방의 예산요청과 국가예산의 총액이 주어졌을 때, 위의 조건을 모두 만족하도록 예산을 배정하는 프로그램을 작성하시오.

 

입력

첫째 줄에는 지방의 수를 의미하는 정수 N이 주어진다. N은 3 이상 10,000 이하이다. 다음 줄에는 각 지방의 예산요청을 표현하는 N개의 정수가 빈칸을 사이에 두고 주어진다. 이 값들은 모두 1 이상 100,000 이하이다. 그 다음 줄에는 총 예산을 나타내는 정수 M이 주어진다. M은 N 이상 1,000,000,000 이하이다. 

 

출력

첫째 줄에는 배정된 예산들 중 최댓값인 정수를 출력한다. 


접근

국가예산 내에 모든 요청 예산을 처리할 수 없을 때는 최대로 줄 수 있는 예산을 찾아야한다.

만약 국가예산 내에 처리할 수 없다고 해보자.

그렇다면 0부터 최대 1,000,000,000까지 탐색을 진행해야 하여 최대 상한선을 찾아야한다. 여기에 연산 수를 줄이기 위해 이진 탐색을 활용한다.

 

left = 0 으로하고 right는 입력받은 예산 중 최댓값을 저장한다.

이제 left + right를 더하고 2를 나눈 값을 최대 상한선으로 설정하여 가능한지 확인한다. 만약 국가예산 내에 할 수 있다면 최종해를 위한 최댓값 비교를 진행하도록 한다.

 

이진탐색을 이해하기위해 문제를 풀고있는데 먼저 순차적으로 탐색하여 푸는 방법으로 시작해보자.

 

구현

- 만약 모든 예산 요청들의 합이 국가예산 내에 가능하다면 요청된 예산 중에 최댓값을 반환한다.

- 그렇지않다면 left = 0, right는 요청된 예산 중 최댓값을 대입한다.

- 이후 이진탐색을 진행하고 mid가 최대 상한선이 된다.

- 요청된 예산을 탐색하면서 mid 이하일 때는 요청된 금액을 더하고 초과할 땐 mid를 더한다.

- total이 국가예산 내에 있다면 mid를 통해 최댓값 비교를 진행하고 left의 범위를 올려준다.

- 범위를 벗어난다면 right의 범위를 내린다.

def solve():

    if sum(numbers) <= max_number:
        return max(numbers)

    left = 0
    right = numbers[-1]
    answer = 0
    while left <= right:
        mid = (left + right) // 2
        total = 0
        for number in numbers:
            if number <= mid:
                total += number
            else:
                total += mid

        if total <= max_number:
            answer = max(answer, mid)
            left = mid + 1
        else:
            right = mid - 1
    return answer

전체 코드

def solve():

    if sum(numbers) <= max_number:
        return max(numbers)

    left = 0
    right = numbers[-1]
    answer = 0
    while left <= right:
        mid = (left + right) // 2
        total = 0
        for number in numbers:
            if number <= mid:
                total += number
            else:
                total += mid

        if total <= max_number:
            answer = max(answer, mid)
            left = mid + 1
        else:
            right = mid - 1
    return answer

N = int(input())
numbers = list(map(int, input().split()))
max_number = int(input())
numbers = sorted(numbers)

answer = solve()
print(answer)